
The Actor Role Coordinator Implementation Developer’s Manual

Nianen Chen , Li Wang
Computer Science Department

Illinois Institute of Technology, Chicago, IL 60616, USA
{nchen3, li}@iit.edu

1. Introduction

The purpose of this document is to describe the analysis, design and implementation of the Actor Role and
Coordinator (ARC) framework. The ARC framework is a middleware application to specify actor, role and coor-
dinator execution environments within which actors across distributed systems exist and operate with other actors
under the constraints specified and enforced by roles and coordinators. Especially, we call an actor execution
environment on a computer node an AA platform. The main features of ARC implementation are actor/role mem-
bership management, actor name management, actor, role and coordinator communication management, actor
behavior management, role/coordinator constraint management and event management.

In this document, we assume that the readers of this document know the basic concept of the Actor, Role
and Coordinator (ARC) model and have C++ and Corba programming knowledge. If you dont have enough
background of the ARC model, we recommend you to read [2, 4]. For the design of the structure and services of
ARC implementation, we recommend reading the ARC realization paper [3]. This implementation is also based
on The Ace Orb (TAO), which is an implementation of Corba 3 specification. The installation, configuration
and compilation of TAO and TAO based applications is beyond the scope of this guide, but will be introduced in
separate documents.

2. Architecture and Software Design

2.1 Use Cases

Based on the ARC model [3, 4], the ARC framework shall focus on the following main use cases:

2.2 Design Issues

The main design and implementation concern of the ARC framework is to provide the abstractions that imple-
ments the Actor, Role and Coordinator semantics, and at the same time provide good performance, scalability and
flexibility for different applications. Based on this goal, there are several design issues we need to consider:

Implement coordination actors and events.
According to the definition of the ARC model, roles and coordinators are “coordination actors” dealing with

constraints and communicating through event. Therefore, we need to explicitly distinguish actors from roles and
coordinators, and events from messages in the implementation.

Actor

Send Asynchronous
Message

Role

Propagate Event

Become another Actor

Coordinator

Tell Constraint

Apply Constraint

Handle a Message

Create a New Actor

Figure 1. Use Cases

2

As defined in [1, 2], computation actors are autonomous and active entities that communicate with each other
through asynchronous messages, as are coordination actors. However, events have higher priorities than com-
putation messages. This ensures that messages that need to be coordinated will be manipulated by coordination
actors before they are dispatched on computation actors. In our implementation, we use ”CORBA asynchronous
message” to achieve the message communication between actors (including roles and coordinators); we then use
”CORBA synchronous communication” to achieve event communication between roles and coordinators. When
events are handled by roles or coordinators, messages are blocked, which reflects the higher priority of the events.

We describe the relationship among actor, role and coordinator in our implementation. This can be partially
observed by the use cases depicted in Figure 2.2. We give more details in the following class diagram:

* It is worth noting that the method ”ask” actually gives a confusing term. The real action the coordinator
performs is ”tell”, which tells the roles what constraint rules shall apply on the current event. Refactory is required
in the future. We just use the name at this moment and keep in mind what it really means.

Maintain scalability and performance as the number of entities increases.
One of the characteristics of a lot of modern systems is that they usually have large numbers of computational

entities. The introduction of active roles into the ARC model helps mitigate the scalability issues in coordination
management by allowing coordinators to only coordinate roles, while roles only coordinator actors that share the
same behaviors.

Because coordination in the ARC model is enforced transparently on the underlying actors, two problems may
occur when the number of actors increases. First, every coordinated message triggers at least one event that must
be handled by remote coordination actors. This may bring additional communication overheads. Second, roles
and coordinators become potential bottlenecks, which may degrade performance and make systems hard to scale.

To alleviate the problems, we have developed a decentralized architecture to further distribute coordination
behaviors and states to local physical nodes, thus avoiding bottlenecks and communication overhead. Because
both roles and coordinators are active and stateful entities, multiple update and query operations may concurrently
be applied to the states of those distributed replicas. Therefore, a synchronization protocol must be in place to
ensure the consistency of the states among different nodes. If such synchronizations occur very frequently, the
overhead of achieving synchronizations may exceed the benefit of distributing roles and coordinators to local
platforms. Hence, tradeoffs need to be made to balance the communication and synchronization costs. Whether
distributing the coordinator/role states will have performance gains is application dependent.

In our framework, users have the option to have logically remote coordinators and roles physically distributed
to local Actor Platforms to reduce the communication overhead. Therefore, we provide three modes to allow user
selections:

Fully Centralized Mode (FCM) In such a mode, every coordination message has to go through potentially re-
mote roles and remote coordinators. This mode is suitable for applications that require very frequent state
updates in both coordinators and roles.

Partially Distributed Mode (PDM) The coordinator is distributed to the nodes where the coordinated roles are
located, but roles are not distributed to the actor platforms. Therefore coordination requests from local
nodes have to go through possibly remote roles, but these roles use local coordinator representatives instead
of remote coordinators. Applications that do not anticipate frequent state updates in coordinators will benefit
by using this mode.

Fully Distributed Mode (FDM) Both coordinator and roles are distributed to every related node. This mode
brings best performance for applications with less frequent synchronization needs.

In our current version of software, we only have FDM implemented. To support the fully distributed architecture
in FDM, we define two supporting entities: Coordinator Representative and Role Representative. As their names

3

send (string destActorName,string message)
ActorName create (string actorName)
become (string state)
handle (string sender, string message)

Actor

string handle_synch(string sender,
 string message)
check_constraints(string destinationActor,
 string operation,

 string parameters,
 string senderActor,
 string senderRole,

 string destinationRole)

Role
string handle_synch(string sender,
 string message)
ask(string constraintType,
 string role,
 string operation,

string parameters,
 string senderRole,
 string receiverRole)

Coordinator

Figure 2. Actor, Role, and Coordinator Class Diagram4

suggest, they represent coordinators and roles and perform coordination behaviors in local Actor Platforms. To
facilitate deploying different modes, these representatives are implemented as coordination-actors. According to
the definitions of coordination actors, they are able to communicate with each other through event communications.
Based on the currently applied mode, different Coordinator Representative and Role Representative instances are
bound to these interfaces during runtime and have different responsibilities. The relationship among Message
Manager, Role, Coordinator, representative interfaces and their instances is depicted in Figure 3.

We will introduce in details in next section about how to use the role representative and coordinator representa-
tive to achieve ARC communications.

Avoid re-inventing the wheel to solve common problems.
Instead of developing our framework from scratch, we take advantage of existing technologies and tools to

support distributed communication, i.e., distributed naming, synchronous and asynchronous communication.
The ARC framework is built on top of TAO (v1.4.1) [5], an implementation of the CORBA 3.x specification. To

minimize the overhead and the footprint of the ARC framework, we only use a small subset of services provided
by TAO. Actors in the ARC framework are built as CORBA objects. They register themselves and locate other
actors through the CORBA naming service, and communicate with each other through the TAO asynchronous
message service. Figure 4 outlines the architecture of the framework. The Role Representative and Coordina-
tor Representative objects localize the functionalities of coordination-actors to further increase scalability of the
system. These concepts will be discussed in detail in a later in this section.

2.2.1 Actor Platform and Message Manager

In the framework, an Actor Platform is installed on every physical node. It provides a uniform way to create actors
and register actors as CORBA services. An Actor Platform is implemented as a “system actor” that creates actors,
roles, and coordinators, initializes their states and behaviors, sends messages and generates events.

We first look at the use case that an AAPlatform has to achieve in Figure 5.
In summary, AAPlatform is responsible for creating all the entities that will be used in the current system. We

specify what actors, roles and coordinators we want in a text based property file. Examples of such property files
will be introduced in next section. Meanwhile, as a ”system actor”, the AAPlatform can also send messages to
other existing actors in the system. Finally, AAPlatform is also a user interface to achieve interactions with system
users. In the sequence diagram in Figure 6, we further depict how a AAPlatform is involved in initialization of the
ARC system when an it is started up in a physical node.

The Platform is a the class where main function locates, where the only global AAPlatform (implemented as a
Singleton) is created. The first thing that the AAPlatform will do after being launched is to read a property file.
Based on the content of the property file, the AAPlatform create an ActorFactory instance and use it to instantiates
a bunch of actors, roles, coordinators, role representatives, and coordinator representatives. Each actor will be
assigned a unique actor name (UAN), which is requested by the AAPlatform and created by a UAManager class.
The format of the name is: ”uan:” + actorType + ”:” + platformName + ”:” + actorId, where actorType is one of
actor, role, coordinator, role representative, coordinator representative, platformName is specified in the property
file, and actorId is generated when the actor is created. This unique UAN will be used to bind to the CORBA
Naming Service than.

With each actor creation, the Actor Platform also creates a Message Manager object for each actor (including
both computation and coordination actors) to handle actor communication tasks. When an actor tries to send a
message to another actor, it delegates the message to its Message Manager. For the sending actor, the Message
Manager acts as a CORBA client object to send the message asynchronously to the destination actor’s message
manager, which acts as a CORBA server object. The receiving message manager then forwards the message to the
receiving actor for processing. Thus, the CORBA middleware details are encapsulated in the implementation of

5

Figure 3. Multi-mode Class Diagram6

Figure 4. The Architecture of the ARC Framework

7

AAPlatform

Create Actor Create Role Create RR

Create
Coordinator Create CR

Read and Apply
Configuration

Handle User Interaction

Send Message

Figure 5. The AAPlatform Use Case8

Platform AAPlatform

startup()

Property Reader

readFile(propertyFile)

Actor Factory

create(coordinator)
create(role)
create(actor)

create(coordinator-representative)
create(role-representative)

UAManager

Generate Name

Actor

create
receiver actor

Set Name

Manage Role
Membership

Naming Service

bind (UA Name, Actor)

Figure 6. The ARC Startup Sequence

9

the message manager and are transparent to application developers who use actors. Figure 7 and Figure 8 indicates
the work flow to send a message in an ARC framework.

Figure 8, using the Corba Naming service as a boundary, left part is the CORBA server side preparation. Specif-
ically, the AAPlatform create an Actor Factory, which bind an actor’s UAN to the Corba naming service, and then
create an instance of the CORBA server side servant, i.e. the MessengerI class. The client side message commu-
nication will start from the Actor sending a message to the MessageManager. The MessageManager will look up
the remote CORBA object location using the unique actor name (UAN) from the CORBA naming service, and
then use this network address to send the message to remote actor through CORBA asynchronous communication
mechanism. When receiving the message sent from the client stub, the skeleton will call the servant MessengerI,
and then the MessengerI will further call the ”handle” method of the real actor.

An important defect of the current implementation is that the MessengerI interface simply wait until the Corba
internal scheduler to call it such that the Actor behavior can be further called. The actor itself does not have the
ability to control which message shall be handled first. We depend on Corba internal scheduling to make the
decision. This is fine when we want to FIFO rule on scheduling, which is implemented by Corba. However, if
we want to do priority-based scheduling, this mechanism is not sufficient. We hence need to place a queue in the
MessengerI, which acts as a message queue for the actor. Messages in the queue can hence be manipulated based
on which scheduling algorithm we use. This shall be accomplished in our coming version.

It is worth noting that an actor is both a client and a server. In other words, actor can both send and receive
messages. Therefore all the classes in Figure 8 shall be duplicated in all AAPlatforms.

2.2.2 Fully Distributed Mode Implementation

In this document we focus on the implementation of the Fully Distributed Mode (FDM) since this is so far the
only mode implemented in our current version.

With FDM, the local Actor Platform creates a Role Representative coordination actor for every existing role
to fulfill both its membership management behavior and coordination behavior. In the ARC model, it is the
roles, but not the actors, that manage group membership. Whenever a new actor is created or an actor changes its
behavior, the roles apply their bind and unbind operations to maintain the consistency of the membership. Figure 9
demonstrates the procedure of a Role Representative performing membership management and implementing the
binding mechanism.

In the ARC model, coordination constraints are transparently applied to actors. This is achieved by (1) buffer-
ing the messages in receiver actors’ mailboxes via Message Managers, (2) obtaining coordination constraints by
forwarding events to the corresponding role representatives and coordinator representative for constraint checks,
and (3) applying the coordination constraints by manipulating the messages in the mailboxes. The communication
between two actors is shown in Figure 10.

If a constraint is found in its local store, the Role Representative requires the corresponding Message Manager
to enact the constraint on the actor. As all these operations are performed locally and no remote communication is
required, the constraint propagations do not introduce much performance overhead.

3. Getting Started

In this section we use concrete examples to show how to program and run applications on ARC framework.
Specifically, in section 3.1, we introduce how to build an actor-based application without involving roles and co-
ordinators. In section 3.2, we describe how to develop an Actor, Role Coordinator application in Fully Distributed
Mode.

10

Sender
Specified?

Sender is
AAPlatform

Sender Role is
Empty

Set Sender Role
to Null

Get Sender Role
Name

Get Receiver
RoleCreate Event

Send Message to
Real Actor

Propagate Event
to Sender RR

No

Yes

No

Yes

No

Yes

Figure 7. Work Flow for Sending a Message11

 Actor:
Receiver

MessengerI:
Interface

Actor Factory

get

call back

AAPlatform

create

Messenger
Server:

Skeleton
Messenger
Client: Stub

 Actor:
Sender

Message
Manager

Naming
Servicebind

send

call CORBA
Communication

look up

send

Figure 8. Message Sending Abstract Class Diagram12

Figure 9. Actor-Role Binding Mechanism13

Figure 10. Communication between Coordinated Actors in FDM14

3.1 Basic Ping Pong Example

In this section, we developed a simple Ping-Pong application, which asks two actors, the Ping actor and the
Pong actor, in different machines to continuously send and reply a specific number of messages to each other. In
this basic Ping Pong application, we don’t require the actors to be bound to roles. There hence also no constraint
check and state synchronization requirements among roles and coordinators.

We give step by step instructions on how to develop, deploy and run the application.

1. Create Ping and Pong Actors.

The following Figures gives the source code for: PingActor.h, PingActor.cpp, PongActor.h, PongActor.cpp.
Both Ping and Pong are inherited from an Actor base class. It is worth noting that in constructors of cus-
tomized actors, we have to specify what are the behaviors of this actor, which is used during role membership
management. The logics of both Ping and Pong actors are quite straightforward and self-explanotory.

Figure 11. PingActor.h

2. Add actors into ActorFactory list.

The second step is to register these two actors to our system, such that during startup they can be initialized.
As can seen from the code, we manually added lines of code to instantiate the PingActor and PongActor
classes. This is due to the lack of reflection mechanism in C++.

3. Create property files.

15

Figure 12. PingActor.cpp16

Figure 13. PongActor.cpp

17

Figure 14. PongActor.cpp

18

Figure 15. ActorFactory.cpp19

There are two property files needed for running AAPlatforms in two physical machines. The IP addresses
need to be changed to the one you are using to run the TAO naming service. As we can see, in this simple
example we don’t need roles and coordinators, and only one actor in each platform is created. Our next
example in next section will show a more complicated property file instance.

Properties1

PLATFORM NAME first
NAMING SERVICE NameService=corbaloc:iiop:192.168.0.2:2809/NameService
MODE FDM
CREATE COORDINATOR NO
ACTORS PingActor

Properties2

PLATFORM NAME second
NAMING SERVICE NameService=corbaloc:iiop:192.168.0.2:2809/NameService
MODE FDM
CREATE COORDINATOR NO
ACTORS PongActor

4. Start naming service.

In one of the machines with the IP address 192.168.0.2, run the following command to start the naming
service.

$TAO ROOT/orbsvcs/Naming Service/Naming Service -ORBListenEndpoints iiop://192.168.0.2:2809

5. Start AAPlatform in physical nodes.

In each machine, run the following command respectively.

PlatformRun Properties1

PlatformRun Properties2

6. Run application

In the AAPlatform where the PingActor locates, type the following command:

send uan:PingActor:first:1 start

You then can see messages are exchanged between two machines just like a PingPong game.

3.2 ARC-based Ping Pong Example

To be continued.

References

[1] G. Agha. Actors: A model of concurrent computation in distributed systems. MIT Press, 1986.
[2] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation. Journal of Functional

Programming, 7(1):1–72, 1997.
[3] N. Chen., S. Ren, Y. Yu, and M. Beckmen. A role-based coordination model and its realization. Journal of Informatica,

32(3):229–244, 2008.

20

[4] S. REN, N. CHEN, Y. YU, P.-E. POIROT, S. L., and K. MARTH. Actors, roles and coordinators a coordination model
for open distributed embedded systems. 4038:247–265, 2006.

[5] D. C. SCHMIDT. The design of the tao real-time object request broker. In Computer Communications, 1998.

21

